T
S
A

0 01 @

E
0 2
S EMBLER

ASSEMBLY IN ONE STEP

ORIGINAL TXT BY © RTK 1997
DOC/PDF VERSION BY ZYBEX

http://www.atariware.cl




Preface

A brief guide to programming the 6502 in assembly language. It will introduce the
6502 architecture, addressing modes, and instruction set. No prior assembly
language programming is assumed, however it is assumed that you are somewhat
familiar with hexadecimal numbers. Programming examples are given at the end.
Much of this material comes from 6502 Software Design by Leo Scanlon,
Blacksburg, 1980.

The 6502 Architecture

The 6502 is an 8-bit microprocessor that follows the memory oriented design
philosophy of the Motorola 6800. Several engineers left Motorola and formed MOS
Technology which introduced the 6502 in 1975.The 6502 gained in popularity
because of it's low price and became the heart of several early personal computers
including the Apple Il, Commodore 64, and Atari 400 and 800.

Simplicity is key

The 6502 handles data in its registers, each of which holds one byte (8-bits) of
data. There are a total of three general use and two special purpose registers:

e Accumulator (A) Handles all arithmetic and logic.The real heart
of the system.

e Xand Y - General purpose registers with limited abilities.
e S - Stack pointer.

e P - Processor status. Holds the result of tests and flags.

Stack Pointer

When the microprocessor executes a JSR (Jump to SubRoutine) instruction it
needs to know where to return when finished. The 6502 keeps this information in
low memory from $0100 to $01FF and uses the stack pointer as an offset. The
stack grows down from $01FF and makes it possible to nest subroutines up to 128
levels deep. Not a problem in most cases.



Processor Status

The processor status register is not directly accessible by any 6502 instruction.
Instead, there exist numerous instructions that test the bits of the processor status
register. The flags within the register are:

bit —> 7 0
ot —— b — b~ ———+
| N | V | | B| D| I | 2z | C | <-- flag, 0/1 = reset/set
ot — b~ ———+

e N NEGATIVE. Set if bit 7 of the accumulator is set.

e V = OVERFLOW. Set if the addition of two like-signed numbers
or the subtraction of two unlike-signed numbers produces a result
greater than +127 or less than -128.

e B = BRK COMMAND. Set if an interrupt caused by a BRK, reset
if caused by an external interrupt.

e D DECIMAL MODE. Set if decimal mode active.

e | = IRQDISABLE. Setif maskable interrupts are disabled.

e Z = ZERO. Set if the result of the last operation (load/inc/dec/
add/sub) was zero.

e C = CARRY. Set if the add produced a carry, or if the subtraction
produced a borrow. Also holds bits after a logical shift.status.
Holds the result of tests and flags.




Accumulator

The majority of the 6502's business makes use of the accumulator. All addition and
subtraction is done in the accumulator. It also handles the majority of the logical
comparisons (is A > B ?) and logical bit shifts.

XandY

These are index registers often used to hold offsets to memory locations. They
can also be used for holding needed values. Much of their use lies in supporting
some of the addressing modes.

Addressing Modes

The 6502 has 13 addressing modes, or ways of accessing memory. The 65C02
introduces two additional modes. They are:

o o +

| mode | assembler format |

+ + +

| Immediate | #aa |

| Absolute | aaaa |

| Zero Page | aa | Note

| Implied | \

| Indirect Absolute | (aaaa) | aa = 2 hex digits
| Absolute Indexed, X | aaaa, X | as SFF

| Absolute Indexed,Y | aaaa,Y |

| Zero Page Indexed,X | aa, X | aaaa = 4 hex

| Zero Page Indexed,Y | aa,yY | digits as

| Indexed Indirect | (aa, X) | SFFFF

| Indirect Indexed | (aa),Y |

| Relative | aaaa | Can also be

| Accumulator | A | assembler labels
o o +

(Table 2-3. _6502 Software Design_, Scanlon, 1980)

Inmediate Addressing

The value given is a number to be used immediately by the instruction. For
example, LDA #3599 loads the value $99 into the accumulator.



Absolute Addressing

The value given is the address (16-bits) of a memory location that contains the 8-
bit value to be used. For example, STA $3E32 stores the present value of the
accumulator in memory location $3E32.

Zero Page Addressing

The first 256 memory locations ($0000-00FF) are called "zero page". The next 256
instructions ($0100-01FF) are page 1, etc. Instructions making use of the zero
page save memory by not using an extra $00 to indicate the high part of the
address. For example,

LDA $0023 = works but uses an extra byte
LDA $23 = the zero page address

Implied Addressing

Many instructions are only one byte in length and do not reference memory. These
are said to be using implied addressing. For example,

cLC = Clearthe carry flag
DEX = Decrement the X register by one
TYA = Transfer the Y register to the accumulator

Indirect Absolute Addressing

Only used by JMP (JuMP). It takes the given address and uses it as a pointer to
the low part of a 16-bit address in memory, then jumps to that address. For
example,

JMP ($2345) = jump to the address in $2345 low and $2346 high
So if $2345 contains $EA and $2346 contains $12 then the next instruction

executed is the one stored at $12EA. Remember, the 6502 puts its addresses in
low/high format.



Absolute Indexed Addressing

The final address is found by taking the given address as a base and adding the
current value of the X or Y register to it as an offset. So,

LDA S$F453,X = where X contains 3

Load the accumulator with the contents of address $F453 + 3 = $F456.

Zero Page Indexed Addressing

Same as Absolute Indexed but the given address is in the zero page thereby
saving a byte of memory.

Indexed Indirect Addressing

Find the 16-bit address starting at the given location plus the current X register.
The value is the contents of that address. For example,

LDA (S$SB4,X) = where X contains 6
gives an address of $B4 + 6 = $BA. If $BA and $BB contain $12 and $EE

respectively, then the final address is $EE12. The value at location $EE12 is put in
the accumulator.

Indirect Indexed Addressing

Find the 16-bit address contained in the given location (and the one following). Add
to that address the contents of the Y register. Fetch the value stored at that
address. For example,

LDA ($B4),Y = where Y contains 6

If $B4 contains $EE and $B5 contains $12 then the value at memory location
$12EE + Y (6) = $12F4 is fetched and put in the accumulator.



Relative Addressing

The 6502 branch instructions use relative addressing. The next byte is a signed
offset from the current address, and the net sum is the address of the next
instruction executed. For example,

BNE $7F  (branch on zero flag reset)

will add 127 to the current program counter (address to execute) and start
executing the instruction at that address. Similarly,

BEQ $F9  (branch on zero flag set)

will add a -7 to the current program counter and start execution at the new program
counter address.

Remember, if one treats the highest bit (bit 7) of a byte as a sign (0= positive,
1=negative) then it is possible to have numbers in the range -128 ($80) to +127
(7F). So, if the high bit is set, i.e. the number is > $7F, it is a negative branch. How
far is the branch? If the value is < $80 (positive) it is simply that many bytes. If the
value is > $7F (negative) then it is the 2's compliment of the given value in the
negative direction.

2's compilment

The 2's compilment of a number is found by switching all the bits from 0 = 1 and
1=0, then adding 1. So,

SFF = 1111 1111 = original
0000 0000 = 1's compliment
+ 1
0000 0001 — 2's compliment, therefore S$FF = -1

Note that QForth uses this for numbers greater than 32768 so that 65535 = -1 and
32768 = -32768.

In practice, the assembly language programmer uses a label and the assembler
takes care of the actual computation. Note that branches can only be to addresses
within -128 to +127 bytes from the present address. The 6502 does not allow
branches to an absolute address.



Accumulator Addressing

Like implied addressing, the object of the instruction is the accumulator and need
not be specified.

The 6502 Instruction Set

There are 56 instructions in the 6502, and more in the 65C02. Many instructions
make use of more than one addressing mode and each instruction/addressing
mode combination has a particular hexadecimalopcode that specifies it exactly.
So,

A9
AD

LDA #S$Saa = Inmediate addressing mode load of accumulator
LDA S$aaaa = Absolute addressing mode load of accumulator, etc.

Some 6502 instructions make use of bitwise logic. This includes AND, OR, and
EOR (Exclusive-OR). The tables below illustrate the effects of these operations:

AND 1 1 -—> 1 "both"
1 0 -> 0
o 1 -> 0
0O 0 -> 0

OR 1 1 -> 1 "either one or both"
1 0 -> 1
0 1 > 1
0O 0 -—> 0

EOR 1 1 -> 0 "one or the other but not both"
1 0 - 1
o 1 -> 1
0 0 -> 0

Therefore, SFF AND S$0F = S$OF since,
1111 1111

and 0000 1111

0000 1111 = $OF

AND is useful for masking bits. For example, to mask the high order bits of a value
AND with $0F:

$36 AND S$SO0F = $06



OR is useful for setting a particular bit:

$80 OR $08 = $88

since 1000 0000 ($80)
0000 1000 (S08)

1000 1000 ($88)
EOR is useful for flipping bits:

SAA EOR $FF = $55

since 1010 1010 (SAR)
1111 1111 (SFF)

0101 0101 ($55)

Other 6502 instructions shift bits to the right or the left or rotate them right or left.
Note that shifting to the left by one bit is the same as multipling by 2 and that
shifting right by one bit is the same as dividing by 2.

The 6502 instructions fall naturally into 10 groups with two odd-ball instructions
NOP and BRK:

Load and Store Instructions
Arithmetic Instructions

Increment and Decrement Instructions
Logical Instructions

Jump, Branch, Compare and Test Bits Instructions
Shift and Rotate Instructions

Transfer Instructions

Stack Instructions

Subroutine Instructions

Set/Reset Instructions

NOP/BRK Instructions



Load and Store Instructions

LDA = LoaD the Accumulator
LDX = LoaD the X register
LDY = LoaD the Y register

STA = STore the Accumulator
STX = STore the X register
STY = STore the Y register

Microprocessors spend much of their time moving stuff around in memory. Data
from one location is loaded into a register and stored in another location, often with
something added or subtracted in the process. Memory can be loaded directly into
the A, X, and Y registers but as usual, the accumulator has more addressing
modes available.

If the high bit (left most, bit 7) is set when loaded the N flag on the processor status
register is set. If the loaded value is zero the Z flag is set.

Arithmetic Instructions

ADC = ADd to accumulator with Carry
SBC = SuBtract from accumulator with Carry

The 6502 has two arithmetic modes, binary and decimal. Both addition and
subtraction implement the carry flag to track carries and borrows thereby making
multibyte arithmetic simple. Note that in the case of subtraction it is necessary to
SET the carry flag as it is the opposite of the carry that is subtracted.
Addition should follow this form:

CLC

ADC ...

ADC ...

Clear the carry flag, and perform all the additions. The carry between additions will
be handled in the carry flag. Add from low byte to high byte. Symbolically, the net
effect of an ADC instruction is:

A+M+C= A



Subtraction follows the same format:

SEC
SBC

SBC
In this case set the carry flag first and then do the subtractions. Symbolically,

A-M-~C= A , where ~C is the opposite of C

Example 1
A 16-bit addition routine. $20,$21 + $22.$23 = $24,$25

CLC ; clear the carry

LDA $20 ; get the low byte of the first number

ADC $22 ; add to it the low byte of the second

STA $24 ; store in the low byte of the result

LDA $21 ; get the high byte of the first number

ADC $23 ; add to it the high byte of the second, plus carry
STA $25 ; store in high byte of the result

... on exit the carry will be set if the result could not be contained in 16-bit number.

Example 2
A 16-bit subtraction routine. $20,$21 - $22,$23 = $24,$25

SEC ; clear the carry

LDA $20 ; get the low byte of the first number

SBC $22 ; add to it the low byte of the second

STA $24 ; store in the low byte of the result

LDA $21 ; get the high byte of the first number

SBC $23 ; add to it the high byte of the second, plus carry
STA $25 ; store in high byte of the result

... on exit the carry will be set if the result produced a borrow

Aside from the carry flag, arithmetic instructions also affect the N, Z, and V flags as
follows:

Z =1 if result was zero, 0 otherwise
N =1 if bit 7 of the result is 1, 0 otherwise
V =1 if bit 7 of the accumulator was changed, a sign change



Increment and Decrement Instructions

INC = INCrement memory by one
INX = INcrement X by one
INY = INcrementY by one

DEC = DECrement memory by one
DEX = DEcrement X by one
DEY = DEcrementY by one

The 6502 has instructions for incrementing/decrementing the index registers and
memory. Note that it does not have instructions for incrementing/decrementing the
accumulator. This oversight was rectified in the 65C02 which added INA and DEA
instructions. The index register instructions are implied mode for obvious reasons
while the INC and DEC instructions use a number of addressing modes.

All inc/dec instructions have alter the processor status flags in the following way:

Z =1 if the result is zero, 0 otherwise
N =1 if bit 7is 1, 0 otherwise

Logical Instructions

AND = AND memory with accumulator
ORA = OR memory with Accumulator
EOR = Exclusive-OR memory with Accumulator

These instructions perform a bitwise binary operation according to the tables given
above. They set the Z flag if the net result is zero and set the N flag if bit 7 of the
result is set.



Jump, Branch, Compare, and Test Bits

JMP = JuMP to another location (GOTO)
BCC = Branch on Carry Clear, C=0
BCS = Branch on Carry Set,

BEQ = Branch on EQual to zero,
BNE = Branch on Not Equal to zero,
BMI = Branch on Minus,

BPL = Branch on PLus,

BVS = Branch on oVerflow Set,
BVC = Branch on oVerflow Clear,

< <ZZNNO
Il
O -0 0O =

CMP = CoMPare memory and accumulator
CPX = ComPare memory and X
CPY = ComPare memory and Y

BIT = testBITs

This large group includes all instructions that alter the flow of the program or
perform a comparison of values or bits.

JMP simply sets the program counter (PC) to the address given. Execution
proceeds from the new address. The branch instructions are relative jumps. They
cause a branch to a new address that is either 127 bytes beyond the current PC or
128 bytes before the current PC. Code that only uses branch instructions is
relocatable and can be run anywhere in memory.

The three compare instructions are used to set processor status bits. After the
comparison one frequently branches to a new place in the program based on the
settings of the status register. The relationship between the compared values and
the status bits is,

o o +
| | N Z C |
o o +
| A, X, or Y < Memory | 1 0 0 |
| A, X, or Y = Memory | 0 1 1 |
| A, X, or Y > Memory | 0 0 1 |
e +

The BIT instruction tests bits in memory with the accumulator but changes neither.
Only processor status flags are set. The contents of the specified memory location
are logically ANDed with the accumulator, then the status bits are set such that,

¢ N receives the initial, un-ANDed value of memory bit 7.
V receives the initial, un-ANDed value of memory bit 6.
e Zis set if the result of the AND is zero, otherwise reset.



So, if $23 contained $7F and the accumulator contained $80 a BIT $23 instruction
would result in the V and Z flags being set and N reset since bit 7 of $7F is 0, bit 6
of $7F is 1, and $7F AND $80 = 0.

Shift and Rotate Instructions

ASL = Accumulator Shift Left
LSR = Logical Shift Right
ROL = ROtate Left

ROR = ROtate Right

Use these instructions to move things around in the accumulator or memory. The
net effects are (where C is the carry flag):
d—t—t—t—t—t—t—+—+

C <= [71615141312]110] <=0 ASL
fot—t—t—t—t—t—t—+

fot—t—t—t—t—t—t—+
0 -> |7]16]5141312|1]0] -> C LSR
fot—t—t—t—t—t—t—+

fot—t—t—t—t—t—t—+
C <= [71615141312]110] <= C ROL
fot—t—t—t—t—t—t—+

fot—t—t—t—t—t—t—+
C —-> [716]5141312]110] -> C ROR
fot—t—t—t—t—t—t—+

Zis set if the result it zero. N is set if bit 7 is 1. It is always reset on LSR.
Remember that ASL A is equal to multiplying by two and that LSR is equal to
dividing by two.

Transfer Instructions

TAX = Transfer Accumulator to X
TAY = Transfer Accumulator to Y
TXA = Transfer X to Accumulator
TYA = Transfer Y to Accumulator

Transfer instructions move values between the 6502 registers. The N and Z flags
are set if the value being moved warrants it, i.e.

LDA #$80
TAX

causes the N flag to be set since bit 7 of the value moved is 1, while



LDX #3500
TXA

causes the Z flag to be set since the value is zero.

Stack Instructions

TSX = Transfer Stack pointer to X
TXS = Transfer X to Stack pointer

PHA = PusH Accumulator on stack
PHP = PusH Processor status on stack
PLA = PulL Accumulator from stack
PLP = PulL Processor status from stack

TSX and TXS make manipulating the stack possible. The push and pull
instructions are useful for saving register values and status flags. Their operation is
straightforward.

Subroutine Instructions

JSR = Jump to SubRoutine
RTS = ReTurn from Subroutine
RTI = ReTurn from Interrupt

Like JMP, JSR causes the program to start execution of the next instruction at the
given address. Unlike JMP, JSR pushes the address of the next instruction after
itself on the stack. When an RTS instruction is executed the address pushed on
the stack is pulled off the stack and the program resumes at that address. For
example,

LDA #SC1 ; load the character 'A'
JSR print ; print the character and it's hex code
LDA #S$C2 ; load 'B'
JSR print ; and print it
print JSR $FDED ; print the letter
JSR SFDDA ; and its ASCII code
RTS ; return to the caller

RTI is analagous to RTS and should be used to end an interrupt routine.



Set and Reset (Clear) Instructions

CLC = CLear Carry flag

CLD = CLear Decimal mode
CLI = CLear Interrupt disable
CLV = CLear oVerflow flag

SEC = SEt Carry
SED = SEt Decimal mode
SEl = SEt Interrupt disable

These are one byte instructions to specify processor status flag settings.

CLC and SEC are of particular use in addition and subtraction respectively. Before
any addition (ADC) use CLC to clear the carry or the result may be one greater
than you expect. For subtraction (SBC) use SEC to ensure that the carry is set as
its compliment is subtracted from the answer. In multi-byte additions or
subtractions only clear or set the carry flag before the initial operation. For
example, to add one to a 16-bit number in $23 and $24 you would write:

LDA $23 ; get the low byte

CLC ; clear the carry

ADC #$02 ; add a constant 2, carry will be set if result > 255

STA $23 ; save the low byte

LDA $24 ; get the high byte

ADC #3500 ; add zero to add any carry that might have been set above
STA $24 ; save the high byte

RTS ; 1f carry set now the result was > 65535

Similarly for subtraction,

LDA $23 ; get the low byte

SEC ; set the carry

SBC #3502 ; subtract 2

STA $23 ; save the low byte

LDA $24 ; get the high byte

SBC #3500 ; subtract 0 and any borrow generated above
STA $24 ; save the high byte

RTS ; 1f the carry is not set the result was < 0

Other Instructions

NOP = No OPeration (or is it NO oPeration ? :)
BRK = BReaK

NOP is just that, no operation. Useful for deleting old instructions, reserving room
for future instructions or for use in careful timing loops as it uses 2 microprocessor
cycles. BRK causes a forced break to occur and the processor will immediately



start execution of the routine whose address is in $FFFE and $FFFF. This address
is often the start of a system monitor program.

Some simple programming examples

A few simple programming examples are given here. They serve to illustrate some
techniques commonly used in assembly programming. There are doubtless dozens
more and | make no claim at being a proficient assembly language programmer.
For examples of addition and subtraction see above on CLC and SEC.

A count down loop

’

; An 8-bit count down loop

start LDX #SFF ; load X with SFF = 255

loop DEX ; X =X -1
BNE loop ; 1f X not zero then goto loop
RTS ; return

How does the BNE instruction know that X is zero? It doesn' t, all it knows is that
the Z flag is set or reset. The DEX instruction will set the Z flag when X is zero.

; A 16-bit count down loop

start LDY #SFF ; load Y with SFF

loopl LDX #SFF ; load X with SFF

loop2 DEX ; X=X -1
BNE loop2 ; 1f X not zero goto loop2
DEY ;Y=Y -1
BNE loopl ; 1f Y not zero goto loopl
RTS ; return

There are two loops here, X will be set to 255 and count to zero for each time Y is
decremented. The net result is to count the 16-bit number Y (high) and X (low)
down from $FFFF= 65535 to zero.



Other examples

** Note: All of the following examples are lifted nearly verbatim from the book "6502
Software Design", whose reference is above.

; Example 4-2. Deleting an entry from an unordered list

; Delete the contents of $2F from a list whose starting
; address is in $30 and $31. The first byte of the list
; is its length.

deluel LDY #$00 ; fetch element count
LDA ($30),Y
TAX ; transfer length to X
LDA $2F ; item to delete

nextel INY ; index to next element
CMP ($30),Y ; do entry and element match?
BEQ delete ; yes. delete element
DEX ; no. decrement element count
BNE nextel ; any more elements to compare?
RTS ; no. element not in list. done

; delete an element by moving the ones below it up one location

delete DEX ; decrement element count
BEQ deccnt ; end of list?
INY ; no. move next element up
LDA ($30),Y
DEY
STA ($30),Y
INY
JMP delete
deccnt LDA ($30,X) ; update element count of list
SBC #$01
STA ($30,X)
RTS

; Example 5-6. 16-bit by 16-bit unsigned multiply

; Multiply $22 (low) and $23 (high) by $20 (low) and
; $21 (high) producing a 32-bit result in $24 (low) to $27 (high)

mltle6 LDA #500 ; clear p2 and p3 of product
STA $26
STA $27
LDX #3516 ; multiplier bit count = 16
nxtbt LSR $21 ; shift two-byte multiplier right
ROR $20
BCC align ; multiplier = 17
LDA $26 ; ves. fetch p2
CLC
ADC $22 ; and add mO to it
STA $26 ; store new p2

LDA $27 ; fetch p3



ADC $23 ; and add ml to it

align ROR A ; rotate four-byte product right
STA $27 ; store new p3
ROR $26
ROR $25
ROR $24
DEX ; decrement bit count
BNE nxtbt ; loop until 16 bits are done
RTS

; Example 5-14. Simple 16-bit square root.

; Returns the 8-bit square root in $20 of the
; 1l6-bit number in $20 (low) and $21 (high). The
; remainder is in location $21.

sqrtl6 LDY #$01 ; lsby of first odd number = 1
STY $22
DEY
STY $23 ; msby of first odd number (sqgrt = 0)
again SEC
LDA $20 ; save remainder in X register
TAX ; subtract odd lo from integer lo
SBC $22
STA $20
LDA $21 ; subtract odd hi from integer hi
SBC $23
STA $21 ; 1s subtract result negative?
BCC nomore ; no. increment sgquare root
INY
LDA $22 ; calculate next odd number
ADC #$01
STA $22
BCC again
INC $23
JMP again
nomore STY $20 ; all done, store square root
STX $21 ; and remainder
RTS

This is based on the observation that the square root of an integer is equal to the
number of times an increasing odd number can be subtracted from the original
number and remain positive.



