
machine code
graphics and sound
for the commodore 64

easy to load routines and ideas

mark england and david lawrence

Chapter 3 High Resolution Commands

C965 60 0060

Commentary

Lines 230-430: These lines set up the variables necessary for the execution

of the high resolution plot of a single pixel.

Lines 460-600: These are the lines which test to see if the pixel to be plotted

falls within the window designated by the next routine. If not, rather than

generate an error, the plot instruction would be ignored.

Lines 620-650: At this point the position must be a valid one so a jump is

made to the HPLOT routine, with program execution returning from

HPLOT to the line drawing routine.

Testing

This routine is necessary for the execution of what follows but cannot be

tested effectively at this stage.

Part 3. The line drawing algorithm (LINE PLOTTING)

There are many methods of calculation, or algorithms, available to aid in

the plotting of a straight line between two points. Of these perhaps the

most widely known and used in microcomputers is ‘Bresenham’s algo­

rithm’ . The basis of this method is to plot a line which has a tendency to be

straight along whichever axis, vertical or horizontal, expresses the greatest

distance between the start and finish points for the line. As this line is

plotted, however, a record is kept of the amount by which the line deviates

from the correct position along the other axis. Whenever the deviation

amounts to one unit, or pixel, the next pixel moves not only one position

along the longest axis but also one pixel along the subsidiary axis.

Suppose that we wished to draw a line from position 0,0, the top left-

hand corner of the screen, to position 10,1, a position one pixel down from

the top and 10 pixels to the right. The first thing to do is to identify which

axis has the greater movement and it is clearly the one where the line must

move from zero to ten. We therefore set two variables, XI and X2, equal to

the start and finish points on this axis. Note that, for the purposes of this

line drawing routine, the axis along which there is the greatest movement

will always be called the X axis, regardless of whether it moves across the

screen or up and down.

We now have two values set:

X 1=0

X2= 10

91

Machine Code Graphics and Sound on the Commodore 64

The two remaining coordinates are now saved in Y1 and Y2:

Y1 =0

Y2= 1

The two ends of line are now defined as X I,Y1 and X2,Y2. We now need

two more variables to represent the difference between the ends of the line

on both axes, and we shall call these DX and DY:

DX = X 2-X 1 = 10

DY = Y2-Y1 = 1

We begin the process of plotting the line by setting one more variable, E,

which will be called the ‘error term’, equal to DX times - 1, so that:

E = -D X = -1 0

We can now get down to plotting pixels. The first one to be plotted is at

X I,Y1, the beginning of the line. In fact, we take a temporary copy of XI

and Y1 into two more variables X and Y, since later we are going to have to

change the values and we do not wish to play around with the record of the

start position of the line.

Having plotted the pixel we now add to the error term, E, twice the

difference between Y1 and Y2, as recorded in DY. Having done this we test

to see whether E is now greater than zero. In this case E started off as - 10

and has had two added, so it has not reached zero. We now add one to the X

coordinate but, because E failed the test, do nothing to the Y coordinate.

X is now equal to one and Y is equal to zero and we now plot that pixel.

The process is repeated five times in all, with the following pixels being
plotted:

0,0

1,0
2,0

3.0

4.0

5.0

At this point, E, which has had two added to it six times, has become greater

than zero. This is a sign that we need to move along the Y axis since what E

actually records is how far we have deviated from the correct position on

the Y axis if we were drawing a true straight line. Y is now increased by one,

so that the next pixel to be plotted will be 6,1. E has twice DX subtracted

from it and thus returns to - 8.

The remaining pixels are plotted at:

7.1
8.1

92

Chapter 3 High Resolution Commands

9.1
10.1

without E ever exceeding zero. By comparing differences we have arrived

at the correct position on both axes. Not only that, by adding twice the

difference on the Y axis to the error term each time, we have even ensured

that the one pixel change in the Y axis takes place in the middle of the line

rather than at the end, so that the line looks more natural.

This straightforward method can be adapted to cover all circumstances

for straight lines. For instance, the method we have just worked through is

designed for lines which move positively along the X axis. For a line whose

longest axis moves in a negative direction the simple solution is to swap the

ends before drawing it. If the Y axis moves negatively, all that needs to be

done is to subtract one, rather than add, every time the error term E exceeds

zero.
The only really tricky manouevre is when the longest axis is the vertical

one rather than the horizontal. Even so, it is easy enough to record the fact

and remember that what is being calculated is not the position across and

then the position down but, rather, the other way around. When it comes

to actually plotting the position on the screen, it will be necessary only to

swap the two coordinates.

The actual routines for line plotting are the most complex you will come

across in this book, involving, as they do, a variety of calculations of a

fairly complex nature. For that reason we will depart from the normal

format of the rest of the book, and in this section enter and test the BASIC

version. To speed up the execution of the BASIC routine, it is assumed that

you will be using it with the high resolution machine code routines in the

memory rather than the BASIC example routines entered so far. You can,

if you wish, quite easily alter the BASIC program given here so that it will

mesh with the BASIC routines given before. The result, however, will be

slow and unlikely to be satisfactory.

Line Plotting — BASIC listing
1 GOTO 3

2 SAVE" @0:LINE DRAW",8 s VERIFY "0s LINE

DRAW",8 s STOP

3 REM

10 REM ROUTINE TO DRAW STRAIGHT LINES

20 P0KE56,12s CLR

30 COLOUR=3072

40 BITMAP=8192

50 SYS (51044) BITMAP,COLOUR

70 SYS 51003

80 SYS 51116

90 GOSUB 2000

170 SYS 50944

93

Machine Code Graphics and Sound on the Commodore 64

180 END

1000 REM DRAW STRAIGHT LINE

1010 SWAPED = 0

1020 DX = ABS(X2—X1) s DY = ABS(Y2-Y1)

1030 IF DY>DX THEN SWAPED=-1 s T=X2:X2=Y

2:Y2=T:T=Y1:Y1=X1:X1=T s GOTO1020

1040 X=X1 : Y=Y1

1050 IF X2CX1 THEN Xl=X2sX2=X:Y1=Y2:Y2=Y

: GOTO 1040

1060 YS = SGN(Y2—Y1)

1070 E = -DX

1080 FOR X = XI TO X2

1090 A = X s B = Y

1100 IF SWAPED THEN B = X : A = Y

1110 IF A<320 AND A>=0 AND BC199 AND B>=

0 THEN SYS (51304) 0,A,B

1120 E = E+2*DY

1130 IF E>0 THEN Y = Y+YS s E = E-2*DX

1140 NEXT

1150 RETURN

2000 REM TEST LINE DRAW

2010 FOR II = 10 TO 310 STEP 300

2020 FOR 12 = 10 TO 190 STEP 25

2025 X2 = II : Y2 = 12

2030 XI = 160 : Y1 = 100

2040 GOSUB 1000

2050 NEXT 12,11

2060 GET T* s IF T$=n" THEN 2060

2070 RETURN

Commentary

Lines 20-180: These lines set up and clear the high resolution screen using

HSCREEN, HIRES and HCLEAR, then call up the line-drawing test part

of the program, finally restoring the screen to low resolution.

Lines 1000-1150: The line-drawing algorithm, which will be commented
upon in sections.

Lines 1010-1030: The routine will always work on the assumption that the

greatest degree of movement for the line will be along the X axis. This does

not mean that the movement will always be across the screen in the way we

would normally define the X axis, but simply that the names of the coordi­

nates will be swapped in order to ensure that the difference between XI and

X2 is always greater than or equal to the difference between Y1 and Y2.

Lines 1040-1050: The routine is designed to work with lines which travel in

a positive direction in terms of the X axis. If a line is defined which travels

backwards, the ends are simply swapped.

94

Chapter 3 High Resolution Commands

Line 1070: ‘E’ is the error term which will be used to determine whether the

line being drawn has deviated enough from the correct course along the Y

axis to justify moving one pixel along the Y axis. It is originally set to the

difference between the two X coordinates.

Line 1080: The line drawing loop will plot as many pixels as there are posi­
tions along the X axis.

Lines 1090-1110: These lines use the HPLOT routine to plot the specified

pixel on the screen. The coordinates may need to be swapped for plotting if

the line drawing routine has already swapped the X and Y axes for the

purposes of calculation.

Lines 1120-1130: The testing of the error term to see whether a move along

the Y axis is needed yet.

Lines 2000-2050: This part of the program conducts the overall test by

defining a series of lines which form a star on the screen and by calling the

line drawing routine to execute each one.

Testing

Simply RUN the program. You should see the high resolution screen set up

and series lines drawn which form a star with its centre roughly in the

middle of the screen.

Line Plotting — assembly language listing

Having tested the algorithm for line drawing in BASIC, we can now look at

the machine code. The method corresponds exactly to what you have just

seen and, as far as possible, the variables used have the same names.

ADD. DATA SOURCE CODE
00 10 PRT
00 20 ORG $C966
C966 30 SYM
C966 70 TEMP = $14
C966 80 XHI = $4B
C966 90 XLO = $4D
C966 100 YHI = $4F
C966 110 YLO = $51
C966 120 MODE = $02
C966 130 SHAPED = $53
C966 140 DX = $5F
C966 150 DY = $61
C966 160 XI = $63
C966 170 X2 = $65
C966 180 Y1 = $67
C966 190 Y2 = $69

95

Machine Code Graphics and Sound on the Commodore 64

C966

C966

C966

C966

C966

C966

C966

C966

C966

C966

C966

C966

C966

C966

C966

C966

C966 2006C0

C969 C903

C96B B005

C96D 8502

C96F 4CFDAE

C972

C972 20B9CA

C975 4C48B2

C978

C978 A900

C97A 854D

C97C 854E

C97E 8551

C980 8552

C982 8550

C984 A9C8

C986 854F

C988 A940

C98A 854B

C98C A901

C98E 854C

C990 60

C991

C991 2000C0

C994 2078C9
C997 A214

C999 A04B
C99B 2001C9

C99E B0D2

C9A0 A515

C9A2 48

C9A3 A514

C9A5 48

C9A6 20FDAE

C9A9 2006C0

C9AC C9C8

AVAR = $6B

BVAR = $6F

E = $6D

ABS = $C8B0

NEGATE = $C8B4
ADD = $C8C2

MINUS = $C8D2

MOVE = $C8E2

SWAP = $C8ED

TEST = $C901

TIMES2 = $C90E

WINDOW = $C93C

GETWRD = $C000

GETBYT = $C006

COMMA = $AEFD

GETMOD

JSR GETBYT

CMP #3

BCS IQERR

STA MODE

JMP COMMA

IQERR

JSR L007

JMP $B248

SETWIN

LDA #0

STA XLO

STA XLO+1

STA YLO

STA YLO+1

STA YHI + 1

LDA #200

STA YHI

LDA #64

STA XHI

LDA #1

STA XHI+1

RTS

GETXY2

JSR GETWRD

JSR SETWIN
LDX #$14

LDY #XHI
JSR TEST

BCS IQERR

LDA $15

PHA

LDA $14

PHA

JSR COMMA

JSR GETBYT

CMP #200

200

210

220
230

240

250

260

270

280

290

300

310

320

330

340

370

380

390

400

410

420

440

450

460

490

500

510

520

530

540

550

560

570

580

590

600

610

620

660

670

680
690

700
710

720

730

740

750

760

770

780

790

96

C9AE

C9B0

C9B2

C9B4

C9B7

C9B8

C9BA

C9BB

C9BD

C9BE

C9BE

C9C1

C9C3

C9C5

C9C8

C9CA

C9CC

C9CF

C9CF

C9D2

C9D5

C9D8

C9DA

C9DB

C9DD

C9DE

C9E0

C9E1

C9E3

C9E4

C9E7

C9E8

C9EA

C9EB

C9ED

C9EE

C9F0

C9F1

C9F3

C9F6

C9F6

C9F8

C9FA

C9FA

C9FC

C9FE

CA01

CA03

CA06

CA09

CA0B

Chapter 3 High Resolution Commands

B0C2 800 BCS IQERR

A269 810 LDX #Y2

A014 820 LDY #$14

20E2C8 830 JSR MOVE

68 840 PLA

8565 850 STA X2

68 860 PLA

8566 870 STA X2+1

60 880 RTS

910 GETXY1

2091C9 920 JSR GETXY2

A263 930 LDX #X1

A065 940 LDY #X2

20E2C8 950 JSR MOVE

A267 960 LDX #Y 1

A069 970 LDY #Y2

4CE2C8 980 JMP MOVE

1010 LINE

2066C9 1020 JSR GETMOD

20BEC9 1030 JSR GETXY1

20FDAE 1040 JSR COMMA

A563 1050 LDA XI

48 1060 PHA

A564 1070 LDA Xl + 1

48 1080 PHA

A567 1090 LDA Y1

48 1100 PHA

A568 1110 LDA Yl + 1

48 1120 PHA

2091C9 1130 JSR GETXY2

68 1140 PLA

8568 1150 STA Yl + 1

68 1160 PLA

8567 1170 STA Y1

68 1180 PLA

8564 1190 STA Xl + 1

68 1200 PLA

8563 1210 STA XI

2078C9 1220 JSR SETWIN

1240 DOLINE

A900 1250 LDA #0

8553 1260 STA SWAPED

1270 L000

A25F 1290 LDX #DX

A065 1300 LDY #X2

20E2C8 1310 JSR MOVE

A063 1320 LDY #X1

20D2C8 1330 JSR MINUS

20B0C8 1340 JSR ABS

A261 1350 LDX #DY

A069 1360 LDY #Y2

97

Machine Code Graphics and Sound on the Commodore 64

CA0D 20E2C8 1370 JSR MOVE
CA10 A067 1380 LDY #Y 1
CA12 20D2C8 1390 JSR MINUS
CA15 20B0C8 1400 JSR ABS
CA18 A05F 1420 LDY #DX
CA1A 2001C9 1430 JSR TEST

CA1D 9017 1440 BCC L001

CA1F F015 1450 BEQ L001

CA21 A9FF 1470 LDA #SFF

CA23 8553 1480 STA SWAPED

CA25 A265 1490 LDX #X2

CA27 A069 1500 LDY #Y2

CA29 20EDC8 1510 JSR SWAP

CA2C A263 1520 LDX #X1

CA2E A067 1530 LDY #Y 1

CA30 20EDC8 1540 JSR SWAP

CA33 4CFAC9 1550 JMP L000

CA36 1570 L001

CA36 A265 1580 LDX #X2

CA38 A063 1590 LDY #X1

CA3A 2001C9 1600 JSR TEST

CA3D B00A 1610 BCS L002

CA3F 20EDC8 1630 JSR SWAP

CA42 A267 1640 LDX #Y 1

CA44 A069 1650 LDY #Y2

CA46 20EDC8 1660 JSR SWAP

CA49 1680 L002

CA49 A26D 1690 LDX #E

CA4B A05F 1700 LDY #DX

CA4D 20E2C8 1710 JSR MOVE

CA50 20B4C8 1720 JSR NEGATE

CA53 A269 1740 LDX #Y2

CA55 A067 1750 LDY #Y 1

CA57 20D2C8 1760 JSR MINUS

CA5A A261 1780 LDX #DY

CA5C 200EC9 1790 JSR TIMES2

CA5F A25F 1800 LDX #DX

CA61 200EC9 1810 JSR TIMES2

CA64 1830 LOOP

CA64 A26B 1850 LDX #AVAR

CA66 A063 1860 LDY #X1

CA68 20E2C8 1870 JSR MOVE

CA6B A26F 1880 LDX #BVAR

CA6D A067 1890 LDY #Y 1

CA6F 20E2C8 1900 JSR MOVE

CA72 2453 1920 BIT SWAPED

CA74 1005 1930 BPL L003
CA76 A06B 1950 LDY #AVAR

CA78 20EDC8 1960 JSR SWAP
CA7B 1980 L003
CA7B 203CC9 1990 JSR WINDOW

98

Chapter 3 High Resolution Commands

CA7E A26D 2010 LDX #E

CA80 A061 2020 LDY #DY

CA82 20C2C8 2030 JSR ADD

CA85 A56E 2050 LDA E+l
CA87 3021 2060 BMI L005
CA89 056D 2070 ORA E

CA8B F01D 2080 BEQ L005

CA8D A9FF 2100 LDA #$FF

CA8F 8514 2110 STA TEMP
CA91 8515 2120 STA TEMP+1

CA93 246A 2140 BIT Y2+1

CA95 1005 2150 BPL L004

CA97 A214 2160 LDX #TEMP

CA99 20B4C8 2170 JSR NEGATE

CA9C 2190 L004

CA9C A267 2200 LDX #Y1

CA9E A014 2210 LDY #TEMP

CAA0 20D2C8 2220 JSR MINUS

CAA3 A26D 2240 LDX #E

CAA5 A05F 2250 LDY #DX

CAA7 20D2C8 2260 JSR MINUS

CAAA 2280 L005

CAAA E663 2290 INC XI

CAAC D002 2300 BNE L006

CAAE E664 2310 INC Xl + 1

CAB0 2320 L006

CAB0 A265 2330 LDX #X2

CAB2 A063 2340 LDY #X1

CAB4 2001C9 2350 JSR TEST

CAB7 B0AB 2360 BCS LOOP

CAB9 2380 L007

CAB9 A225 2390 LDX #$25

CABB A900 2400 LDA #$00

CABD 2410 L008

CABD 954B 2420 STA $4B. X

CABF CA 2430 DEX

CAC0 10FB 2440 BPL L008

CAC2 A94C 2450 LDA #$4C

CAC4 8554 2460 STA $54

CAC6 60 2470 RTS

CAC7 2480 END

TOTAL ERRORS IN FILE --- 0

TEMP 14

XHI 4B

XLO 4D

YHI 4F

YLO 51

MODE 02

SWAPED 53

Machine Code Graphics and Sound on the Commodore 64

DX 5F

DY 61

XI 63

X2 65

Y1 67

Y2 69

AVAR 6B

BVAR 6F

E 6D

ABS C8B0

NEGATE C8B4

ADD C8C2

MINUS C8D2

MOVE C8E2

SWAP C8ED
TEST C901

TIMES2 C90E

WINDOW C93C

GETWRD C000

GETBYT C006

COMMA AEFD

GETMOD C966

IQERR C972

SETWIN C978

GETXY2 C991

GETXY1 C9BE

LINE C9CF

DOLINE C9F6

L000 C9FA

L001 CA36

L002 CA49
LOOP CA64

L003 CA7B

L004 CA9C

L005 CAAA
L006 CAB0
L007 CAB9
L008 CABD

TOTAL NUMBER OF SYMBOLS --- 45

CHECKSUM

3977

4444

6C54

7402

7607

6738

Machine code

ADD DATA

C966 20 06 C0

C96E 02 4C FD

C976 48 B2 A9

C97E 85 51 85

C986 85 4F A9

C98E 85 4C 60

C9 03 B0 05 85

AE 20 B9 CA 4C

00 85 4D 85 4E

52 85 50 A9 C8

40 85 4B A9 01

20 00 CO 20 78

100

Chapter 3 High Resolution Commands

C996 C9 A2 14 A0 4B 20 01 C9 9D23

C99E B0 D2 A5 15 48 A5 14 48 A7B4

C9A6 20 FD AE 20 06 C0 C9 C8 6C8A

C9AE B0 C2 A2 69 A0 14 20 E2 A9C2

C9B6 C8 68 85 65 68 85 66 60 9B70

C9BE 20 91 C9 A2 63 A0 65 20 5E02

C9C6 E2 C8 A2 67 A0 69 4C E2 CSCE

C9CE C8 20 66 C9 20 BE C9 20 8AFA

C9D6 FD AE A5 63 48 A5 64 48 CAB4

C9DE A5 67 48 A5 68 48 20 91 84C1

C9E6 C9 68 85 68 68 85 67 68 9C2A

C9EE 85 64 68 85 63 20 78 C9 7621

C9F6 A9 00 85 53 A2 5F A0 65 7281

C9FE 20 E2 C8 A0 63 20 D2 C8 7184

CA06 20 B0 C8 A2 61 A0 69 20 659A

CA0E E2 C8 A0 67 20 D2 C8 20 C368

CA16 B0 C8 A0 5F 20 01 C9 90 A716

CA1E 17 F0 15 A9 FF 85 53 A2 6004

CA26 65 A0 69 20 ED C8 A2 63 75CF

CA2E A0 67 20 ED C8 4C FA C9 86BD

CA36 A2 65 A0 63 20 01 C9 B0 87B6

CA3E 0A 20 ED C8 A2 67 A0 69 3F75

CA46 20 ED C8 A2 6D A0 5F 20 7526

CA4E E2 C8 20 B4 C8 A2 69 A0 BC7A

CA56 67 20 D2 C8 A2 61 20 0E 6922

CA5E C9 A2 5F 20 0E C9 A2 6B A023

CA66 A0 63 20 E2 C8 A2 6F A0 8526

CA6E 67 20 E2 C8 24 53 10 05 66D1

CA76 A0 6B 20 ED C8 20 3C C9 8591

CA7E A2 6D A0 61 20 C2 C8 A5 8C8D

CA86 6E 30 21 05 6D F0 ID A9 4F7B

CA8E FF 85 14 85 15 24 6A 10 ADAC

CA96 05 A2 14 20 B4 C8 A2 67 39EB

CA9E A0 14 20 D2 C8 A2 6D A0 7062

CAA6 5F 20 D2 C8 E6 63 D0 02 689E

CAAE E6 64 A2 65 A0 63 20 01 AD5D

CAB6 C9 B0 AB A2 25 A9 00 95 B461

CABE 4B CA 10 FB A9 4C 85 54 7186

CAC6 60 0060

Commentary

Lines 70-220: These are the locations for the variables that will be used by

the routine, representing spare addresses in the zero page of memory. To

the variables used by the BASIC routine are added TEMP, which will be a

temporary variable used at certain points, and MODE, which will allow the
line to be drawn or erased, as with an individual pixel earlier. As described

in the previous routine, we also need parameters for the size of the screen,

the variables to define this being HXI, XLO, YHI and YLO.

101

Machine Code Graphics and Sound on the Commodore 64

Lines 370-420: A subroutine to obtain the MODE parameter and test that

it is in the range 0 -2 .

Lines 490-620: Subroutine to set the size of the screen window to 320

across by 200 down. Any lines which fall within this window will be passed

by the previous window test routine.

Lines 660-880: A subroutine to pick up the coordinates of the end point

of the line. The Y coordinate is tested against the limit of 0-199, since this

never changes. The X coordinate is passed to the window test routine, since

the width of the window may vary according to whether we are in multi­

colour mode or not. If either coordinate is off the screen, an ILLEGAL

QUANTITY error is generated.

Lines 910-980: A subroutine to perform the same check for the XI and Y1

coordinates.

Lines 1000-1220: The main line drawing routine starts here. The previous

subroutines are called upon to pick up the coordinates and the MODE. The

resulting parameters are returned as numbers stored on the stack. They are

pulled off the stack by these lines and placed into the locations specified in

the table at the beginning of the routine.

Lines 1250-1260: The variable SWAPED, which indicates whether what

would normally be horizontal and vertical have been exchanged for the

purposes of calculation, is set to zero.

Lines 1290-1340: These lines perform the equivalent of the BASIC

instruction (used in the previous BASIC line drawing routine) DX = ABS

(X 2-X 1)

Lines 1350-1400: Equivalent to the BASIC instruction DY = ABS

(Y2-Y1)

Lines 1420-1450: Equivalent to the BASIC line IF DX< = DY THEN. . .

Lines 1470-1480: Set SWAPED to - 1, or $FF, since in 16-bit two’s com­

plement format, - 1 = $FFFF.

Lines 1490-1540: Swap X l/Y l and X2/Y2 using the previously entered

subroutines.

Lines 1580-1610: Equivalent to IF X l> X2 THEN GOTO L002.

Line 1630: Swap XI and X2 only.

102

Chapter 3 High Resolution Commands

Lines 1640-1660: Swap Y1 and Y2 only.

Lines 1690-1720: Equivalent to E = - DX.

Lines 1740-1760: Equivalent toY2 = Y 2 -Y l. Note that this is not in the

original BASIC program. There is nothing subtle about this command — it

is simply that there are not that many storage locations available in the

early pages of the memory when we are working with machine code and

BASIC. Since the variable Y2 is not going to be used for anything again,

the place where it was stored is now a convenient location to store the sign

of Y2 - Y1, or YS as it is called in the BASIC program. All that happens is

that the two-byte address previously holding the value Y2 will be loaded

with the result of Y2 - Y1. The fifteenth, or sign bit, will be a convenient

indicator of the value of YS, being set if YS is - 1 and reset if YS is 1.

Lines 1780-1810: From now on, it will not be DX and DY which are

required but 2*DX and 2*DY. These lines perform the multiplication in

advance.

Lines 1850-1900: Equivalent to A = XI : B = Y1

Lines 1920-1930: Equivalent to IF SWAPED> 128 THEN GOTO L003.

Remember that SWAPED will be either 255 or zero according to whether

the X and Y coordinate have been swapped or not.

Lines 1950-1960: These lines swap the values in A and B if necessary.

Line 1990: Calls WINDOW to test and plot the point in question.

Lines 2010-2030: Equivalent to E = E + 2*DY.

Lines 2050-2080: Equivalent to IF E< = 0 THEN GOTO L005.

Lines 2100-2120: In BASIC it is a simple matter to add to Y the value of

the sign of Y 2 -Y l. All we need to do is to use YS = SGN(Y2-Yl) and

later add YS. There is no such neat equivalent in machine code. To perform

the same operation it is simpler to add together two 16-bit numbers, even if

one of them (called TEMP in this case) is only going to be plus or minus

one. These two lines place the value - 1 into TEMP.

Lines 2140-2170: The contents of the sign bit of Y2 (we are using this to

store the result of Yl - Y2 now) are transferred to the negative flag. The
negative flag is now tested and, if positive, a jump is made around the two
lines which send TEMP to the negate routine entered earlier, where it will

103

Machine Code Graphics and Sound on the Commodore 64

have its sign changed.

Lines 2200-2220: Equivalent to Y1 = Y1 + YS.

Lines 2240-2260: Equivalent to E = E - 2*DX.

Lines 2290-2360: Equivalent to NEXT X, but notice that to reduce the

number of variables we do not bother with a new variable X, we simply use

XI as the loop variable. Equally we could have had a loop FOR XI = XI

TO X2 in the BASIC program.

Lines 2390-2460: These lines play no part in the actual line drawing. They

are needed because this routine has used up so many of the spare locations

available for storage when BASIC is running, that we are actually using

some locations which will be needed by the BASIC interpreter when our

machine code routine returns control to the 64’s ROM. These have to be

tidied up.

Testing

Take the BASIC line drawing program that you entered earlier and alter it

so that the whole section from line 1010 to line 1140 is replaced with:

1010 SYS (51663) 2,X1,Y1,X2,Y2

and lines 2010 and 2020 to:

2010 FOR II = 10 TO 310 STEP 20

2020 FOR 12 = 10 TO 190 STEP 20

The result should be a far more complex star pattern which would have

taken the earlier program an eternity to print. Do not worry if some of the

lines appear to have gaps in them — they are being drawn in inverse mode

and they erase each other where they brush.

Syntax

The syntax for LINE is:

SYS (51663) { MODE} , { START POSITION X} , { START

POSITION Y} ,{ END POSITION X} ,{ END POSITION Y}

MODE is defined as for the PLOT routine. X must be in the range 0-319
and Y in the range 0-199.

8. HIGH RESOLUTION CIRCLES (CIRCLE)

Having seen the complexity of the line drawing commands, you may not be

surprised to discover that a command to draw a circle is also a relatively

104

